Physicists discover magnetic spin control methods with electric fields

Avatar By Le Williams | 2 years ago

EPFL scientists have uncovered a process to reverse electron spins using electric fields for the first time, paving the way for programmable spintronics technologies.

The field of spintronics has given rise to technological concepts of “spintronic devices,” which would operate on electron spins, rather than their charge, used by traditional electronics.

In order to build programmable spintronic devices, physicists must manipulate complex spins in certain materials using magnetic fields.

In a new set of experiments, an international team of physicists

Led by an international team of physicists, Hugo Dil and researchers at EPFL have now demonstrated the ability to control what they call “the spin landscape” using electric fields. They accomplished this in a new class of materials based on germanium telluride (GeTe), which is the simplest ferroelectric material operating at room temperature.

The scientists used a technique called spin- and angle-resolved photoemission spectroscopy (SARPES), which can measure the spin of electrons, and has been perfected by Dil’s lab. By combining SARPES with the possibility to apply an electric field, the physicists demonstrate electrostatic spin manipulation in ferroelectric α-GeTe and multiferroic (GeMn)Te.

In addition, the scientists were able to follow the spins’ switching pathway in detail. In (GeMn)Te, the perpendicular spin component switches due to electric-field-induced magnetization reversal. This provides firm evidence of magneto-electric coupling, which opens up the possibility of programmable semiconductor based spintronics.

“Our previous work showed that magnetic fields can control spins in these materials,” says Dil. “And now we’ve shown that spin manipulation is also possible using electric fields. Our experimental findings open up a promising path to only use electric fields in a spintronics device, strongly reducing the energy consumption.”